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On a rotational flow disturbed by gravity 

By H. P. GREENSPAN 
Department of Mathematics, Massachusetts Institute of Technology, 

Cambridge 

(Received 23 June 1975) 

We examine a rapidly rotating flow that exhibits periodic vortex detachment. 
Specifically, the rotation/symmetry axis of a fluid-filled cylinder is set perpen- 
dicular to gravity. A free buoyant cylindrical float placed within the container is 
acted upon by both centrifugal and gravitational forces, the competition of which 
causes fluid motion and, in certain parameter ranges, flow instability. The motion 
is determined, a criterion for separation is advanced, preliminary experiments 
and data are described and the relationship of this phenomenon to other examples 
of vortex shedding in rotating fluids is discussed. 

1. Introduction 
Phillips (1960) studied the motion of a fluid that incompletely fills a cylindrical 

container in rapid rotation about its symmetry axis, which is perpendicular to the 
direction of gravity. A central air core develops as a consequence of centrifugal 
forces overcoming buoyancy forces but gravity can cause an instability which is 
manifested as a column collapse. Phillips reasoned that a necessary condition 
for the stability of the flow is that the radial pressure gradient be positive every- 
where at  the surface of the bubble and on this basis he derived the stability 
criterion 

where r is the radius of the air column, g is the gravitational acceleration and SZ is 
the rotation rate of the container. 

Experiments with a partially filled container yielded results that were con- 
sistent with this formula and the flow became unstable when the radius of the 
core was decreased to a ‘critical’ value. The instability was described by Phillips 
simply as column collapse, and indeed the phenomenon appeared to be a very 
complicated interaction of waves, viscous and nonlinear effects. 

Gans (1976) examined more closely the nature of this instability within an 
almost completely filled cylinder as an off-shoot of an investigation (with 
W. V. R. Malkus) of unstable precessional motions in a rotating cylinder. In  both 
of these experimental configurations a periodic formation of very intense line 
vortices was observed near the centre, whose axes were parallel to the main 
rotation axis. 

In another quite different context, Fujita (1971) reported the periodic pro- 
duction of strong vortices about the main funnel of a tornado that is in transla- 
tion along the ground. 

These phenomena are so strikingly similar that something more than mere 

g/R2r < Q, (1) 



336 H .  P. Greenspan 

coincidence is suggested. It would appear that in each case the vortices are shed 
from the region of the central core as a manifestation of shear-layer separation 
in much the same way as two-dimensional vortices are detached from a solid 
cylinder that rotates a t  constant speed in a uniformly moving stream (see 
Goldstein 1938). Further support for this view comes from the work of Walker & 
Stewartson (1974), who examined separation in the free shear layer of the Taylor 
column formed by a body moving slowly in a rotating fluid. 

As an illustration of the periodic generation of vortices in rotating flows and in 
order to begin the study of this process in a definite setting which is as simple as 
possible, we consider the problem treated by Phillips with one important modi- 
fication: the air column is replaced by a very long, very buoyant, rigid cylinder, 
an ordinary plastic drinking straw which is sealed at both ends. This change 
eliminates centrifugal waves on the interface, column deformation, and collapse, 
and yet it retains the phenomena of instability and vortex shedding. In  addition, 
measurements are much simplified as is the mathematical analysis (although this 
is never really apparent). 

An exploratory experiment immediately reveals the following information: 
(a) At high rotation rates, the fluid motion is stable and steady. The straw 

‘floats’ near centre, displaced downward a bit, and it rotates at a constant 
rate Q, that is slightly less than the angular velocity s1 of the container, i.e. 
SZ, < s1. Relative to the tank, the straw has a retrograde angular velocity. 

( b )  The difference s1- SZs increases significantly as SZ decrea’ses. 
( c )  At a critical value of SZ which depends on the diameter of the straw, the 

motion becomes unstable, unsteady and quasi-periodic. In  cyclic fashion, an 
intense line vortex, figure 1 (plate l), is shed from the vicinity of the straw 
which thereupon experiences an immediate and rather large increase in its 
angular velocity SZs. The free vortex decays in the time required for spin-up; 
meanwhile, the rotation rate of the straw again decreases markedly until another 
vortex is shed and the process is repeated. 

It is the object of this research to determine the motion of the fluid, the position 
and angular velocity of the straw and to advance a tentative criterion for the 
onset of instability. The broader issue, that rapidly rotating flows through their 
strong propensity for two-dimensionality and longitudinal rigidity can indeed 
experience periodic vortex separation as do solid bodies, will be pursued 
independently. 

2. Formulation 
Certain idealizations are introduced a t  the outset in order to facilitate a very 

extensive calculation. We consider then the rapid rotation of an infinitely long, 
fluid-filled cylinder about its symmetry axis, which is aligned perpendicular to 
gravity as shown in figure 2. An infinitely long, weightless, cylindrical float, i.e. 
a sealed straw of radius rl, is placed inside the container, where it is free to move in 
response to gravitational, pressure and viscous forces. The position of the weight- 
less straw is such that the net force and torque on it are zero at all times; however, 
we shall be concerned here only with steady-state equilibrium. 
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Detached 
vortex 

Float 

Gravity 1 
FIGURE 2. Experimental configuration, showing the orientation of axes, the position of the 

float and a detached vortex. 

In  an inertial frame the equations of steady motion of a viscous incompressible 
fluid of density pw and kinematic viscosity v are 

v.q = 0,  

(V x q )  x q = - v (p/p,+gy +&q.q) - v v  x v x 9. 

q = Qr26 

whereas on the surface of the straw, given by 

(2) 

The boundary condition on the outer cylindrical surface r = r2 is 

(x - erl cos w)2 + ( y  - erl sin w)2 = r:, 
the velocity is q = Qsr$ x ri. 

(Here fi is the unit normal vector a t  the inner cylinder.) The parameters e, w and 
Qs, which specify the position and angular velocity of the straw, must be deter- 
mined from the motion and the additional conditions that the net force and 
torque on this body are zero. These requirements are given in mathematical form 
in (17) and (19) below, after the selection of a convenient system of co-ordinates. 

A stream function $ such that 

q = v x [ $ ( X , Y ) & I  (3) 

can be introduced since, in the idealized geometry, the motion is two-dimensional 
and independent of distance along the rotation axis. 

If distance, velocity and pressure are scaled by rl, Qvl and pw Qzr;, the problem 
can be cast in dimensionless terms. Equation (2) is then 

- (A$) (V$) = - V(p + cty + +V$. V$) + EV(A$) x &, (4) 

where ct = g/Q2r1, E = v/Qrf. ( 5 )  

Of these, ct is the inverse Froude number and E is the usual Ekman number, 
both of which are small in fluid motions examined herein. 

Although (4) must be used to compute the pressure force on the straw, it is 
generally simpler to consider the equation for vorticity as primary: 

[V(A$)] x V$ = E&AA$. (6) 

The problem now is to solve these difficult equations in a two-dimensional 
domain bounded by non-concentric circles; see figure 3 (a). 

22 F L M  74 
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in) ih) 

FIGURE 3. Cross-section of the container and the mapping onto concentric cylinders in the 
5 plane. 

This task is eased somewhat by a change of variables that transforms the 
geometry into a circular annulus, i.e. the cylinders are made concentric. Although 
the equations of motion are complicated by this manoeuvre, the trade-off is 
advantageous as shown by Wood (1957) and Segel(1961), who both solved similar 
problems of viscous flow between $xed non-concentric cylinders. The analysis 
presented here is an adaptation and an extension of that employed by Wood, who 
also dealt with rapid rotation (small Ekman number). With 

z = x+iy  = reie 

and 6 = pei6 
the desired transformation is 

z + (6 - E )  eiw ' = 6z + (1 - e i w  

where 6 = - 2€[ (5)2- 1 -$+( ( (5)2- 1 -€2)2-4€2]*]-'. 

(7) 

The interior circle in the x, y plane (the straw) becomes p = 1 in the 6 plane (see 
figure 3) and the outer boundary IzI = r2/r1 maps into the concentric circle 

p = /3 = (r2/rl) (I - s6)-1. (9) 

In  terms of the Jacobian of this transformation 

the radial and azimuthal velocity components in the 6 plane are 

1 a$ v=--- 1 a@ u =- - 
pJ* a$ ' J i  ap* 

The equations of motion (4) and (5) become 

-J-'A@V@ = -V(P+ay+frJ-'V$.V?/f)+EV(J-lA$) x f, (12) 
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The boundary conditions at the impermeable walls are then 

$ = O ,  -=-- a’ ;[J(l,$)]t on p = 1; 
aP 

(15) 
$ = Q (a constant), - a$ = - r 2 [J(p, $)I* on p = B. 

aP rl 
The stress components in the new co-ordinates are 

(Here Paa is the component in the direction of b increasing, of the stress exerted a t  
(a, b )  across the surface a = constant.) The condition of no net force on the weight- 
less straw p < 1 may be expressed in terms of vector components (see Segel 
1961): 

11: component: /~(PppcosO-Pp6sinO) J*d$ = 0 ;  

y component: jr(PppsinO+Pp6cosO) J*d$ = 0;  

where z - E e i U  = eiQ, as illustrated in figure 3. These equations can be combined 
by multiplying the second by i and adding it to the first to obtain 

/~(Ppp+iPp6)ei0J*d$ = 0. 

According to (7), the function eiO is given by 

and since e-ia is a constant, (1 7) can be written as 

Finally there must be no net torque on the straw, the mathematical statement 
being 

l r P p + J * d $  = 0. (19) 

The formulation is now complete and the solution of (12) and (13) must be 
determined subject to the boundary conditions (14) and (15) and the constraints 
(18) and (19). All unknowns- the fluid velocity q, the pressure p and the location 
and rotation rate of the straw as specified by E ,  w and Q2,-must be expressed in 
terms of position (x, y) and/or the basic parameters of motion a, E and r2/r1. 

3. Procedure 
A description of the general approach and a summary of results are presented in 

this section; important details of analysis appear in appendices or in cited 
references. 

22-2  
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A satisfactory solution of the problem formulated in the last section, especially 
the calculation of the angular velocity of the straw Q8, involves both viscous and 
nonlinear processes. Fortunately the inherent difficulties of the full Navier- 
Stokes equations are partially mitigated in this problem of rapid rotation because 
parameters a and E are both small numbers. We can then attempt to represent all 
unknown quantities as regular perturbation expansions (essentially in powers of 
a) about some known state and further to use boundary-layer (singular pertur- 
bation) theory to analyse regions of significant viscous shear. 

We are concerned primarily with a configuration in which r2/rl is large so that 
the straw actually occupies very little of the total volume of the cylindrical con- 
tainer. In  this case (8) and (9) imply 

p N- 72/rp 6 21 - &Ip2; 
i.e. p is large and 6 is very small (and negative). As Wood (1957) noted i t  is then 
advantageous to use 6 as the basic expansion parameter and to regard p and E 
as independent parameters. Therefore, let 

(i) 
(ii) p =p0+6p1+62p2+ ... ; 

(iii) a,/Q = yo + 67, + Bv2 + . . . ; 
(iv) 6J = 6Jo+Sw1+S2W2+ ... ; 
(v) a = 6a1+62a2+ ...; 

(vi) & = &o+6&l+S2&,+ ... . 

$ = $0+6$1+S2$2+ ... ; 

In  this format 

(i) J = Jo+6J1 +62J2+ ..., 

(iii) r2/rl = p + ... .) 
These expansions are now substituted into the basic equations (12) and (13) 

as well as the boundary conditions (14) and (15) and constraints (1 8) and (1 9). 
This is a fairly straightforward but very laborious task, the result of which is a 
sequence of boundary-value problems for the perturbation quantities associated 
with the same power of 6. The object is to carry the analysis forward until a 
sufficiently good approximation for each dependent variable in (20) is attained. 
Ordinarily we would be content to find all terms of first order. Unfortunately 
there is no retrograde rotation in evidence at this stage of theoretical development 
and i t  is necessary to proceed to the second-order calculation of the torque. Since 
the shear stress exerted on the straw by the surrounding fluid is sensitively 
related to the form and variation of flow in the boundary layer, the computation 
of torque on the inner cylinder requires a fairly precise determination of rectified 
zonal currents, i.e. the azimuthally independent component of flow within the 
boundary layer. As might be suspected the algebra involved is extensive and 
tedious. For this reason, the analysis at second order is aimed directly at the 
computation of yz  and the circumferential velocity a t  p = 1 +, the outer edge 
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of the boundary layer. This information allows us to compute the angular velocity 
of the straw and to advance a plausible criterion for instability. 

The outcome of this calculation is surprising and important because the 
desired corrections are found to be much larger than expected, O(a2/E*) rather 
than O(a2). Since E is small, terms of this magnitude are, practically speaking, 
comparable to those of first order. The formal procedure is however based on the 
restriction a < E*. 

The main results of the analysis detailed in appendix B that concern the 
position and motion of the cylindrical float are the formulae 

(i) Q,/Q = 1 - .,/262E-4,!?2(p2 - 4) + . . . , ] ( 2 2 )  
(ii) w = -@+ ...; 
(iii) E = -6(/92-1)+ ...; 
(iv) a = -26/32+ ...; 

a$( 1 + , #)lap = - i + 2s(pa- i) cos 4 + 4 2  ~-*szpyp--  4) + . . . . (23) 
The last expression is essentially the inviscid, circumferential component of 
velocity v, just outside the boundary layer on the straw. 

4. Discussion 

of the basic parameters 

and it follows that 

Since /3 ( 2: r2/r1) is a large number, (22) and (23) can easily be rewritten in terms 

a = g/(Q2rl), E = v/(Qr2,), 

(i) 
(ii) w N -4.; 
(iii) E N ga; 

(24) 

(25 )  

I 
Q,/Q N 1 - 2-%a2E-*; 

and v ( l + , # )  N i+acosq5-2 -hx2E~.  

Equations (24) describe the position and angular velocity of the straw. According 
to (i) of this group, the rotation rate of the straw is less than that of the cylinder 
and, relative to the tank, the float has a retrograde velocity. From (ii) and (iii) we 
learn that the centre of the straw is displaced downward a dimensional 
distance Qarl. 

According to Phillips (1963), fluid particles convert potential energy to kinetic 
energy in moving, that is falling, from the top side to the underside of the float. 
Since the circumferential velocity is increased below the free core, continuity 
requires that the fluid thickness there decrease, so that the displacement is 
downward as predicted. In  this discussion, we shall need no more precise descrip- 
tion of the fluid motion about the non-concentric cylinders other than it is a 
complicated perturbation from rigid rotation with a boundary layer at each wall. 

The formula for SZ, is the easiest to try to confirm since a constant rotation rate 
can be determined precisely with a stroboscope. However, measurement of posi- 
tion requires more sophisticated techniques and was not attempted beyond visual 
corroboration that the displacement was indeed a small distance downward. 

Preliminary experiments were carried out in a Plexiglas cylinder of inner radius 



342 H .  P . Greenspan 

7.6 em and length 19 em. Ordinary drinking straws sealed at both ends were used 
as floats. Individual diameters varied from 0.18 to 0-4 em but the lengths were 
fixed at approximately 18cm. For safety reasons, the rotation rate of the 
apparatus was kept below 2400 r.p.m. although higher angular velocities were 
attainable by the variable speed motor. In  a typical run, C? was set a t  the upper 
limit and measurement of the steady-state value of C?, was made after ten to 
fifteen minutes had elapsed. The rotation rate C? was then decreased by 100 r.p.m. 
increments and the procedure repeated until instability occurred. The point of 
instability thus bounded within the last 100 r.p.m. interval of measurement was 
more accurately fixed by traversing this range several times from above and 
below in increments of 20r.p.m. 

The results shown in figure 4 are consistent and in fair agreement with theory, 
equation (24i), but also indicate the need for better data. Some of the sources of 
error are as follows: 

(a)  The tank and the straws are too short to be considered infbitely long. 
Viscous end effects are probably significant since these corrections increase the 
observed value of SZ,. 

(b )  The restricted range of rotation rates is one for which a is not sufficiently 
small to satisfy the assumptions made in the analysis. Typical values are 
0-05 < a < 0-4, and 0.01 5 E )  5 0.05. 

(c) The sealed drinking straws were not weightless (a density bf 0.2 &/ern3 was 
typical), exactly circular or rigid. 

( d )  At certain frequencies, resonant inertial modes may have been excited. 
Boundary-layer separation and the detachment of a vortex from the surface 

of a body in a rotational flow are very complicated phenomena that are not 
readily susceptible to theoretical study. A n  adverse tangential pressure gradient 
and a point of zero shear stress on the surface of a body are the most commonly 
adopted criteria for separation; Phillips’ condition for the stability of a central 
air column in rotating fluid, equation (I) ,  requires the net radial pressure gradient 
to be positive everywhere on the bubble surface. 

We take the onset of instability to coincide with the appearance of the first 
stagnation point in the inviscid flow at the outer edge of the boundary layer on 
the surface of the straw. This point of zero absolute velocity is closely related to 
flow reversal within the neighbouring boundary layer and the ‘suction’ of that 
layer off the surface of the float. Since the effects of both adverse tangential and 
normal pressure gradients are taken into account, this criterion should provide a 
reasonable quantitative (but conservative) estimate for the onset of instability. 
This calculation is moderately involved even though the velocity is approximated 
by only three terms of its complete series expansion. Since the main features of 
the flow are incorporated a t  this stage, and the values of a at instability are small, 
the approximation seems valid and adequate. 

The normal component of velocity u is, to lowest order, zero a t  the straw and 
throughout the shear layer surrounding this surface. Therefore, stagnation points 
are situated a t  v( 1 + , $) = 0 or by (25) 

v( l+,$)  = ~ + ~ c o s $ - ~ - % c ~ E - *  = 0. 
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FIGURE 4. Rotation rate of the straw a, 218. the angular velocity of the container n in 
several cases of varying diameter: 0,  r1 = 0.4 om, L = 16 cm, ps = 0.44 g/cmS; x , 
r1 = 0.33 cm, L = 18 cm, ps = 0.15 g/cm3; A, r1 = 0.29 cm, L = 17.6 cm, pB = 0.17 
g/cm3; m, rl = 0.2 cm, L = 18.1 cm, ps = 0.18 g/cm3; 0, rl = 0.18 cm, L = 18 cm, 
ps = 0.27 g/cm3; +, rl = 0.13 cm, L = 17.7 cm, ps = 0-12 g/cmS. Theoretical curves 
shown correspond to rl = 0.4 cm and rl = 0.19 cm. The value of R at which instability 
occurred in each case is shown by an arrow on the horizontal axis. 

For Q large but decreasing, and 71 fixed, the point of stagnation occurs first a t  
q5 = n- (0 = in- in the physical plane) when the rotation rate reaches a critical 
value given by 1 -a - 2-4aa2E4 = 0. 

This formula defines the transition border between stable and unstable regimes. 
(A description of the unsteady unstable flow is givenins I.) The stability boundary 
line can be plotted as a vs. E* or rl vs. 0, the latter being more relevant to the 
acquisition and interpretation of data. If rl is prescribed, the critical value of i2 
below which the flow is unstable can be read directly from figure 5. Conversely, 
if Q is specified the graph tells how large the radius of the straw must be in order 
to have a stable state of motion. The few experimental points indicate fair 
agreement with (26)  (or (1) for that matter) but do not cover a sufficiently broad 

( 2 6 )  
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FIQURE 5. Radius of the straw (cm) ws. angular velocity at which instability occurs as 
determined from theory, equation (26) (solid curve). Experimental results are indicated, 
as is the criterion of Phillips for an unstable air core (dashed curve). 

range of parameter values to be conclusive evidence. More precise measurements 
will be required to evaluate this stability condition. 

As to the speculations made in the introduction, they remain just that for the 
present. The rigidity and two-dimensionality of rapidly rotating flows do seem to 
cause periodic vortex ‘detachment’ very like that about a solid body, but un- 
doubtedly it will be difficult to obtain a quantitative statement of the general 
conditions for, and periodicity of, vortex shedding other than ‘ shear-layer 
instability’. A slight variant of the mechanism described here is evidently in- 
volved in the air core collapse as well (Gans 1976), and may also contribute to the 
production of vortices in many other rotating fluid motions. 

The study of Walker & Stewartson (1974) is important in this regard because 
it shows that separation can occur at a fluid interface in a rotating flow. It should 
be noted that although the production of longitudinal vortices is known to be a 
part of the process by which such Taylor columns are detached when the fluid 
flow is slightly nonlinear (Taylor 1923), the periodic shedding of vortices from a 
coIumn that acts like a solid cylinder has not been observed. Quite possibly the 
causative mechanism in this situation is too sensitive to do much towards 
re-establishing the basic flow. However, Taylor columns formed in other ways, 
say by a source-sink arrangement, might be more ‘rigid’, in which case rhythmic 
detachment of the quasi-stable state could be detected and analysed. 

Flow past a vortex, or a vortex in motion, could well involve a hierarchy of 
detached vortices. Strong vortices shed from the primary swirl would in turn 
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detach their own satellite vortices by the same physical process and this would 
continue until some criterion for separation relating local translational and 
rotational velocities is violated. This mechanism may be involved in the pro- 
duction of suction spots reported by Pujita (1971), and any possible implication 
in the formation of a tornado from a larger, cyclonic cloud should be examined. 

This research was partially supported by the Air Force Office of Scientific 
Research of the United States Air Force, Grant F44620-71-C-0110. Miss J. 
Greenspan served as laboratory assistant. 

Appendix A 
Prom the definitions (1 l), (16) and (20) it follows that 
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Appendix B 
The perturbation analysis described in 8 3 is developed here in the minimal 

detail for it to be followed and reconstructed. 
The substitution of the series expansions (20) into the basic equations (12) and 

(13), the boundary conditions (14) and (15) and the constraints (18) and (19) 
leads to a sequence of boundary-value problems associated with consecutive 
powers of 8. The fundamental problem, that for O(80) terms, is 

with the conditions 

(B 2) 
$o = o ,  a$,/ap = -yo at p = 1; 

$0 = Qo, a@olap = - P  a t  p = P. 
The pressure is determined from 

- A+oV$o = - V R o  + EVA$o x fc, (B 3) 

where Ro = Po + % W o  * W O .  (B 4 )  

The conditions of zero net force and zero torque on the straw, p = 1, imply that 

and 

The solution of this problem is 

$ 0 -  --I( 2 P 2 - 1 ) ,  

po = - +p2 + constant, 

with yo = 1, Q0 = -*(p-l); 

and the motion to this degree of approximation is essentially a state of rigid 
rotation. No other unknown quantities can be determined a t  this stage and the 
theory is carried to the next order. 

The new boundary-value problem, O(S), is 

a@, a Wl a W O  

P aP O a4 a$ O ap ap a$ 
[a (A$ ) - - - ( A $  )-+- (A$l - 4p COB $A$o) - 

a 
- - (A$l-  4p cos $A$.,) = E{AA$r, - 4A(p COB $A$&}, (B 8) a$ 

with $, = 0, a$,/ap = -(y1+2yOc0~$) at p = 1; 
@l = Q1, a$,lap = - 2F2cos 9 at p = $; 

a t p  = 1 = 0, 

IO2= (2 cos $ei + P$) d$ = 0. 
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Here we have for compactness defined 

sn = P$ + ip'zj. 
The equation for the pressure is 

- [A$OV$l+ (A$,- 4P cos @$o) V$ol 

Rl = p l  + a, sin (oo + 4) + &(2V$, . V$l - 4p cos $V$o. V$o). 

= - VR, + EV(A$, - 4p cos #A$o) x k, (B 11) 
where 

These equations are considerably simplified by substituting the explicit formulae 
for $o, in particular a$o/a$ = 0 and A$., = - 2 ,  and by introducing the new 
variable 

Equations (B 8)-(B 10) then reduce to 

(B 12) 

Yl = $,+p3cos$. (B 13) 

a(Ayl)/a$ = EAAY,; (B 14) 

onp = 1: y1 = cos 9, ay,lap = - y1 + cos +, 

onp  = P: y1 = Q,+P~cOS$,  aur,/ap = ~ = c o s + .  

The pressure is obtained from 

(AT,) pfi = - V(R,  + 2$1) + EV(AY1) x k. (B 15) 

Boundary-layer methods are used to solve this problem; conditions on the normal 
derivatives of the stream function require that the solution be determined correct 
to O(E*).  If in the interior the stream function is developed as 

Y, = Ylo + EJY1,+ EY12 + , . . 
then from the basic equation we find that 

AT,?& =fn(P) 

A T 1  =f(p)* 

for n = 0, 1, 2 with Af,(p) = 0. More simply put 

Since pressure and velocity must be periodic in $J the integration of the $ com- 
ponent of the momentum equation (B 15) yields 

so that in fact AYl = constant, (B 16) 

outside boundary layers. Conventional techniques are now applied to obtain the 
following approximations : 

$1 2: R ~ [ ( ( ( ~ + ~ ~ ) P - P ~ P - ~ - P ~ ) + E ~ ( G ~ ( P ) + ~ ~ ( ~ ) + ~ ~ ( ' ~ ( ~ ) ) ) ~ ~ ~ I ,  (B 17) 
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where c = E - b -  11, 7 = W P - p ) ,  

P - 1  
G,(p) = - 2P e-@r[p-p-1(P2-,8+ I)], 

Gi(LJ = 2/82e-*in exp c - i&3, 
z S f ( ~ )  = - 2e-fir exp [ - i47~ ; 

p ,  N [ - (1 + p ) p  + 3pp-1+p3- 2/82] cos 4. (B 18) 

In  addition a, = -2p2, wo = -@, y1 = 0, Q1 = 0. (B 19) 

The equations of the second-order boundary-value problem are 

- -(A$,- a 4p COB $A$ ) 2 a$ +- a (A$z - 4p cos $A$, 
a4 O aP aP 

+ 2A3hO( 2p2 cos2 6 + p2 + 1)) *' 
a4 

a W O  - - {A$2 - 4p cos $A$, + 2A$-,(2p2 cos2 $ +p2 + 1)) ,] a$ 
= EA[A$-, - 4p cos $A$, + 2(2p2 C O S ~  4 +pa + 1) A$o]; 

- CA$OV$2 + (A91 - 4P cos Q W O )  V$I + (A11-2 - 4P cos $A$, 

(B 20) 

+ 2A$.,(2p2 cos2 qi +pz + 1)) V$o] 
= - VR2 +EV[A$, - 4p cos $A$l + 2A$0(2p2 C O S ~ $  +pa + I)] x k, (B 21) 

where 

R, = p 2  + al[2p cos 4 sin (wo + 4) + w1 cos (wo + $) - (p2  +p2) sin wO] + a2 sin (wo + $) 

(B 22) 

+ *[V$,. V$, f 2VqF0. v$2 - 8p cos $mjb0. v$l 
+ 2(2p2 cos2 (i5 +p2 + l)V$h0. V$h0]. 

The boundary conditions are as follows: 
o n p =  1: 

(B 23) 

(B 24) 

(B 25) 

i 
$2 = 0, a$p,lap = - (y2 + 2y, cos 4 + 2y0 cos 241, 1; (P:i(4 cOS2 4 - 2)  + 2 COS $PF$ + PFh) d$h = 0, 

/ r ( F . a e i p + 2 q e 2 i @ +  2F0(3e3i6-ei@))d# = 0;  

This problem also simplifies by using information already in hand and by 
introducing 

We obtain the equations 

onp  = /3: +2 = Q ~ ,  a$zpp = - 2 p ( p  cos 24 + p2 - 1). 

Y2 = $2+p4cos2Q,+*p4-p2. 

a 
a4 

+- (A", - 4p cos $AYI )  = EA(AY2 - 4p cos # A Y I )  ( B  26) 
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and 

p(AY,- 4p cos $AYp1) 8 = { - V(R2 + 211.2) + AY1V$-1) 
+ EV(AY,  - 4p cos $AY,) x k. (B 27) 

Once again boundary-layer theory is employed to solve the problem. Since by 
(B 16) AYl is constant to O(E8) in the interior domain, there the braced quantity 
in (B 27) is representable entirely as a gradient, while (B 26) in the interior 
reduces to 

a(AY2)/a$ = EAAY,. 

The arguments that lead to (B 16) can be repeated to show that in the 'inviscid' 
interior A T ,  = constant, or in particular 

m 

Y, = Cop2+Cl+C21np+ 2; A,#+- cine. (B 28) 
1 ( 3 

From the boundary conditions 

00s 2$ - fr at p = 1, 

Q ~ + ~ 4 c o s 2 $ + ~ ~ 4 - / 3 2  a t  p =p, 
we find that A ,  = B, = 0, n+ 2; 

and co+cl = -4, 
C,,/32+Cl+C,ln/3 = Q2++p4-P2. 

If the functions Yl, Y, are resolved into interior and boundary-layer com- 
ponents as 

Yl = Tl+E*'T'l(E,$), T 2  = TZ-tE4q2(C9$), (B 30) 

(B 31) E = E-fr(p - I) ,  

the appropriate form of (B 26) in the boundary layer is then 

- [2(1--P2) E sin$ +Re i (Gl ( l )  + oi(E)) e@] - a3T1 

aC3 
a4 

aC4 
[q2 - 4 cos $'F1] = - (9, - 4 cos $ T1). +- (B 32) 

a3 

aE2 a$ 
The boundary conditions at p = 1 on tangential velocity and torque, (B 23), 
imply tha t  

(B 33) 
a -  a -  
- Y2(1, $) +- Y,(O, $) = - (?,+ 2 cos 24) 
aP aE 

and (B 34) 

The remaining condition a t  p = 1 and the conditions and the boundary-layer 
equations at p = /3 must still be specified. However solution of the complete 
problem is a formidable task and since there is available sufficient information 
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to pluck from the theory the quantities sought, y 2  and Tp ( 1 ,  $), we make this 
limited calculation the sole objective here. The basic technique to this end is to 
consider zonal averages, as for example, 

With the explicit form for \zp, obtainable from (B 17) ,  the zonal average and 
integration of (B 32) yield after much algebra 

a2 - (9,) = Re { - +( - i)% [ - 2/32eiii"Gq( 6 )  + +IG,I2 + 2i(P2 - 1 )  (5 + 2( - i)-*) G z ]  
ac2 

+i(P2+3)cT,*-lqi)lG612}, (B 36) 

where an asterisk denotes the complex conjugate. Upon evaluating this ex- 
pression at = 0 and substituting the result in (B 34) it follows that 

2 -  - -2*E-h/32(/32-4), (B 37) 

or for P2 large Y2 - - -2*E4/34. (B 38) 

a 
-<iP2)l0 = 3p"(p"4). 
86 

The integration of (B 36) yields, in particular, 

This formula is substituted into the average of (B 33) 

to obtain 

But from (B 28)  
a@2(1,4)>/%3 = - y2 -3P2(P2-4 ) .  

From the last two equations we conclude that 

Therefore for ,8 large and E small, see equation ( B 3 8 )  , 

@ 2 ( 1 > $ ) P P  21 -Y2. 

And finally we may combine our results to obtain the approximation 

a$( i ,$ ) lap  1: - I + ~ P ~ ~ C O S $ - ~ ~ P .  

This completes the derivation of the formulae quoted in the text. 
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( b )  
FIGURE 1. (a )  Floats on the surface of the straw in stable conditions. ( b )  Instability; floats 

are aligned along the axis of a detached rertex. 
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